Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects.

نویسندگان

  • Márcia T Rodrigues
  • Manuela E Gomes
  • Carlos A Viegas
  • Jorge T Azevedo
  • Isabel R Dias
  • Fernando M Guzón
  • Rui L Reis
چکیده

This study aims to assess the in vivo performance of cell-scaffold constructs composed of goat marrow stromal cells (GBMCs) and SPCL (a blend of starch with polycaprolactone) fibre mesh scaffolds at different stages of development, using an autologous model. GBMCs from iliac crests were seeded onto SPCL scaffolds and in vitro cultured for 1 and 7 days in osteogenic medium. After 1 and 7 days, the constructs were characterized for proliferation and initial osteoblastic expression by alkaline phosphatase (ALP) activity. Scanning electron microscopy analysis was performed to investigate cellular morphology and adhesion to SPCL scaffolds. Non-critical defects (diameter 6 mm, depth 3 mm) were drilled in the posterior femurs of four adult goats from which bone marrow and serum had been collected previously. Drill defects alone and defects filled with scaffolds without cells were used as controls. After implantation, intravital fluorescence markers, xylenol orange, calcein green and tetracycline, were injected subcutaneously after 2, 4 and 6 weeks, respectively, for bone formation and mineralization monitoring. Subsequently, samples were stained with Lévai-Laczkó for bone formation and histomorphometric analysis. GBMCs adhered and proliferated on SPCL scaffolds and an initial differentiation into pre-osteoblasts was detected by an increasing level of ALP activity with the culture time. In vivo experiments indicated that bone neoformation occurred in all femoral defects. The results obtained provided important information about the performance of SPCL-GBMC constructs in an orthotopic goat model that enabled future studies to be designed to investigate in vivo the functionality of SPCL-GBMC constructs in more complex models, viz. critical sized defects, and to evaluate the influence of in vitro cultured autologous cells in the healing and bone regenerative process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold

Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect.   Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each.   Procedures- Mesenchymal stem cells were isolated from h...

متن کامل

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds.

This study aims to investigate the effect of culturing conditions (static and flow perfusion) on the proliferation and osteogenic differentiation of rat bone marrow stromal cells seeded on two novel scaffolds exhibiting distinct porous structures. Specifically, scaffolds based on SEVA-C (a blend of starch with ethylene vinyl alcohol) and SPCL (a blend of starch with polycaprolactone) were exami...

متن کامل

Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds.

In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF...

متن کامل

The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds.

Tissue-engineered constructs designed to treat large cartilage defects or osteoarthritic lesions may be exposed to significant mechanical loading as well as an inflammatory environment upon implantation in an injured or diseased joint. We hypothesized that a three-dimensionally (3D) woven poly(ε-caprolactone) (PCL) scaffold seeded with bone marrow-derived mesenchymal stem cells (MSCs) would pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of tissue engineering and regenerative medicine

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2011